溶接欠陥補修方法に関する実態調査
（建築鉄骨における溶接部の欠陥及び補修方法の一考察 その3）

正会員 加田 輝久*1 同 石原 完爾*4 正会員 横田 和伸*2 同 齋藤 哲也*3
同 岩本 雅典*5 六度村 英司*6

溶接欠陥 欠陥補修 表面欠陥
内部欠陥 食違い

1. はじめに
本稿では、その1、その2に先立ち鉄骨製作工場（以下、工場）および設計監理者に対して実施した、溶接欠陥の補修に関する実態を把握するためのアンケート調査結果について報告する。

2. アンケート調査の概要
アンケートは平成13年6月に実施し、東日本のAW検定受験工場の約200社に配布、そのうち約半数の106社から回答をいただいた。工場グレードの内訳は表1のとおりである。

<table>
<thead>
<tr>
<th>工場グレード</th>
<th>回答数</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>11</td>
</tr>
<tr>
<td>A</td>
<td>7</td>
</tr>
<tr>
<td>H</td>
<td>61</td>
</tr>
<tr>
<td>M</td>
<td>24</td>
</tr>
<tr>
<td>R</td>
<td>2</td>
</tr>
<tr>
<td>グレードなし</td>
<td>1</td>
</tr>
<tr>
<td>計</td>
<td>106</td>
</tr>
</tbody>
</table>

アンケートは、
① 全面溶込み溶接部の内部欠陥に対する補修について
② 全面溶込み溶接部の表面欠陥に対する補修について
③ 食違い・ずれに対する補修について
から構成され、それぞれに対し検査のタイミングと場所、補修方法と補修場所、溶接姿勢、溶接材料、溶接条件等に関する質問を設定した。回答はあらかじめ完成した、紙一式または複数選択式とし、複数回答を含めた回答総数を千枚として集計した。
また、工場に対して行ったアンケートを、東日本のAW検定委員を中心とした設計・監理者側に対しても行ない、工場側との比較検討ととした。
本稿では、主に工場に対するアンケート結果を掲載する。

3. 内部欠陥に対する補修溶接
社内検査時に検出された内部欠陥の補修溶接は、ほぼ全ての工場が内面で行っており（図1）、補修溶接を指示するのは約50%がUT検査者であった。
ガウジング範囲は欠陥の種類により変えており、範囲の基準はJASS6等を参考にしているようである。しかし、欠陥位置がコア部近傍の場合には、裏当て側からガウジングを行う工場も約40%あった（図2）。

溶接方法は約90%が半溶接し、半自動CO2を使用している（図3）。しかし、屋内での補修溶接となると被覆アーク溶接を使用する比率が約70%と高くある。
屋内での補修溶接は、ほぼ全ての工場で本溶接と同じ溶接材料を使用し、約30%はYG18を使用していた（図4、YG11との併記含む）。溶接条件は、「鉄骨工事技術指針・工場製作編（日本建築学会1996）」（以下、技術指針）に記載されているパス間温度350℃以下、室温40℃以下を示した工場が約70%、「特に管理していない」が約30%であった。
また、予熱は約50%が行っておらず、グレード、地域による差異はなかった。

4. 表面欠陥に対する補修溶接
外観検査は約30%が溶接終了直後、約60%がU T検査時に行っており（図5）、約70%の工場が溶接表面、代替タブ端面、裏当て金付近を全て見ていただいている。
表面欠陥の補修溶接は約85%が屋内で行っており、補修方法は、アングーケット、オーバーラップ、ビード不整については内面溶接、ガウジング仕上およびその併用が70%～90%で、表面割れおよびビットの補修についてはガウジングを行う場合が多かった（図6）。また、溶接ビードの最小長さは40～50mmが最も多く、表面割れの場合は割れ両端から40～50mmとするものが多いかった。
溶接方法は、工場内では約65%が半自働CO2、屋外では約90%が被覆アークであった。欠陥種類別では、表面割れ収れ、余盛不足の補修は自働CO2の比率が過半数を超えているが、他の表面欠陥の補修は被覆アークの比率が高かった。
溶接条件については、内部欠陥の場合に比べて差は低い結果となっていた。予熱については約半数が行っていないと回答している。

5. 食違い・ずれに対する補修溶接
食違い・ずれに対する対応を初段数値が「ある」と回答した鉄骨製作工場は60%で、その補修方法は、ほとんどの補強余盛、次に再製作であった。

The Research about the Welding Defects and Repairs
(Studies on the Welding Defects and Repairs of Welded Joints in Steel Structure Buildings, Part.3)
食違い・ずれに対する検査は、ほとんどの工場で実施しているが、工場別では検査前のみ約55％、UT検査時等の検
査後のみが約15％、検査前に検査後の両方で実施しているのは約30％である（図9）。検査場所は、接続工場（屋
内）及びその他（組立場所等）を回答している工場は約80％
となっており、組立検査、UT検査のタイミングとほぼ対
応していた。

接続方法は、補修場所が工場内の場合には、被覆アーク溶
接の比率は約20％、屋外の場合は約80％であった。

補修接続の接続条件については、技術指針に記載されてい
る条件を示した工場がほとんどで、予熱については半数が行
っていないと回答している。

6. 補修接続に対する疑問点

補修接続についての疑問点では、補修接続の繰り返しやシ
ョートビード、本接続補修接続で接続材料を変えることに
よる鋼材への影響、などが挙げられていた。また、厚板の初
層部に発生した内部欠陥については、は單に側面から補修す
ることも考えられたが、補修接続YGW18を使用すること
は避けるべき、といった具体例もあった。

食違い・ずれについては、ずれの量に対する具体的な補修
方法がない。補修余盛が他の接続部分と干渉しても大丈夫か
、H型鋼の製品許容値達に対応があり、現在のH型鋼の製品
精度や加工方法では食違い・ずれをなくすのは無理ではないか
、などが挙げられている。

7. まとめ

アンケート調査結果から、内部欠陥、表面欠陥の補修方法
は、おおよそJASS6、技術指針に準じていることがわかった。
しかし、内部欠陥の補修接続が被覆アーク接続で行われる場
合もあり、低入熱になりがちな補修接続を高入熱対応で
開発されたYGW18が使用されていることが多い、予熱
があり実施されていないことなどの実態もわかった。

食違い・ずれの発生については、H形鋼の寸法精度が大き
く影響し、ダイアフラムの板厚を厚くすることで誤差を吸収
しようとする工事が多いようである。補修方法については明
確な基準がないため、設計監理者側にも考え方の差があり、
指示を受ける工場側の困感があるようだ。

補修接続に関して疑問をもたらすが、それが解決されず
に作業が進めざるをえない工場の実態が、あらためて認識で
きた。

本Wiegelでは、これらの実態を参考とし、接続欠陥に関する
問題の解決に向けて、今後も研究を行っていく所存である。

最後に、今回のアンケート調査に協力いただいた皆様に謝
意を表します。

*1 三井建設㈱
*2 NTT Facilities㈱
*3 総日本計画博士（工学）
*4 NTT都市開発㈱

*5 櫻竹工務店 工修
*6 鹿島建設㈱

*1 Mitsui Construction.
*2 NTT Facilities, Inc., M. Eng.
*3 Nihonseki Inc., Dr. Eng.
*4 NTT Urban Development Corp.

*5 Takenaka Corp., M.Eng.
*6 Kajima Corp.