自然欠陥を有する溶接部の脆性的破壊に関する実験的研究
（その１ 実験計画）

溶接欠陥 脆性的破壊

低温引張試験 衝撃試験

1.はじめに

建築鉄骨溶接検査試験（AW検定試験）は、建築鉄骨に携わる溶接技能者に対する技能検査を全国的に行っているもので、溶接業務等の種別に応じて、現在、工場溶接、現場溶接およびフックススタブ等の使用を想定した代替エンドタブ（工場）の3種類の試験が実施されている。AW検定試験の試験体形状を図－1に示す。

試験の判定は一般に、外観検査→放射線透過試験→マクロ試験、曲げ試験の順序で行われ、ある試験項目で不合格であった場合には以降の試験は行われないこととしている。その結果、マクロ・曲げ試験の試験体加工を行っていない溶接欠陥を含んだ試験体が多数残存することになる。ただし、溶接ビード表面は放射線透過試験を実施する場合に、約1mm残して研削処理を行っている。

本研究は、欠陥を有する溶接部の既往の研究は比較的、人工欠陥を利用しているものが多いため、現在の結果を有する溶接部の性能評価、特に試験体を基準的に脆性的に破壊させることにより、自然欠陥が脆性的破壊に及ぼす影響を把握し、今後の研究へのデータを主目的としている。

本報では昨年度実施した実験の実験計画について報告する。

2.実験概要

2.1基礎実験

実験を計画するに当たって、以下の問題点が考えられた。
①使用している鋼材のミルシートが必ずしも特定できないことに加え、鋼材の使用方向（L方向またはC方向）が未調査であること。
②溶接の施錠温度・入熱が不明であること。

そこで、同等の鋼材を使用して、ほぼ同様の溶接条件であると想定される同一工場・同一波形・同一溶接速度のオーステナイトフェライト用の試験体を用いて、工場溶接試験体、現場溶接試験体、代替エンドタブ試験体を各々について基礎実験を行うこととした。基礎実験の概要を以下に示す。

1）材料引張試験

素材および溶接部: JIS Z 3111 A2号（各3体）

Experimental studies on the brittle fracture in the welded joints with actual weld defects. SHIMA Tohru, ISHIHARA Kanji, NISHIKAWA Koji, HAMADA Hiroyuki, HIRAI Yukio, FUJINO Hiroshi and MORITA Koji

—601—
2.3 試験方法

試験温度については、基礎実験の結果により決定することとした。また、荷重・伸び関係と荷重・歪み関係については、伸びはゲージレングス 100mm で測定し、歪みは溶接金屬上の3点および母材中央1点に歪みゲージを貼付して測定することとした。

3. 基礎実験結果

基礎実験のうち、引張試験結果を表-2、シャルビーハウセ実験結果を図-1に示す。溶接欠陥の推定手法およびシャルビー衝撃吸収エネルギーレベルを考慮し、WES2805 およびAPD手法*1を用いて検討した結果、脆性破壊の発生の観点から試験温度を -40℃ であることを決定した。以上の観点から現状溶接試験体のうちの1体（434℃）は 0℃ で実験を行うこととした。

表-1 試験材一覧

<table>
<thead>
<tr>
<th>試験体種別</th>
<th>試験体番号</th>
<th>荷重種類</th>
<th>試験体種類</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場溶接</td>
<td>3F</td>
<td>LF</td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td>4F</td>
<td>LF,IP,BH</td>
<td>(b)</td>
</tr>
<tr>
<td>現場溶接</td>
<td>43V</td>
<td>全長IP</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td>44V</td>
<td>全長IP</td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td>46V</td>
<td>LF,IP</td>
<td>(a)</td>
</tr>
<tr>
<td>代替ET</td>
<td>3H</td>
<td>IP</td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td>8H</td>
<td>IP</td>
<td>(b)</td>
</tr>
</tbody>
</table>

図-2 放射線透過試験結果（模式図）

表-2 基礎試験（引張試験）結果

<table>
<thead>
<tr>
<th>試験片</th>
<th>YS(MPa)</th>
<th>TS(MPa)</th>
<th>破断伸び%</th>
</tr>
</thead>
<tbody>
<tr>
<td>母材</td>
<td>工場溶接</td>
<td>357</td>
<td>534</td>
</tr>
<tr>
<td>現場溶接</td>
<td>321</td>
<td>523</td>
<td>41</td>
</tr>
<tr>
<td>代替ET</td>
<td>358</td>
<td>552</td>
<td>26</td>
</tr>
<tr>
<td>溶接金屬</td>
<td>工場溶接</td>
<td>417</td>
<td>531</td>
</tr>
<tr>
<td>現場溶接</td>
<td>521</td>
<td>623</td>
<td>28</td>
</tr>
<tr>
<td>代替ET</td>
<td>393</td>
<td>505</td>
<td>36</td>
</tr>
</tbody>
</table>

参考文献: *1「動的な繰り返し大変形を受ける構造物での脆性破壊に対する評価方法」（APD II 委員会研究報告）